

1st International Congress on Analytical Chemistry, Electrochemistry and Separation Techniques October 15th-16th, 2022

ADSORPTION OF IONIC DYES METHYLEN BLUE AND ACID BLUE29 INTO POLYVINYLPYRROLIDONE/BENTONITE COMPOSITE FROM WASTEWATER

<u>HEDDI Djawhar^{1, 2*}</u>, BENKHALED Amal², BOUSSAID Abdelhak¹ and CHOUKCHOU-BRAHAM Esma²

¹Laboratory of Research on Macromolecules, Tlemcen University, Algeria

INTRODUCTION

*Email** :*heddi_djawhar@yahoo.fr*

²Toxicomed Laboratory, Tlemcen University, Algeria

Removal of noxious dyes is gaining public and technological attention. The effectiveness of adsorption as a means of dyes removal has made it an ideal alternative to other more costly treatments. In this study, we were interested to :

✓ synthesize a novel composite based with polyvinylpyrrolidone/sodic bentonite.

✓ applied this composite for the retention of cationic dye methylen blue and anionic dye acid blue29.

$1/\lambda$ (cm ⁻¹)	1000	917	3648 - 3801	3620
Group	Si-OH	Al-OH	R-OH (libre)	R-OH

$1/\lambda \text{ cm}^{-1}$	358 6 - 3801	2855 - 2924	1180	1642
Group	$OH (H_2O)$	C-H	C-N	C=O

Table 1:_Characteristic bands of Bt-Na $1/\lambda$ (cm ⁻¹) 1000 917 3648 - 3801 3620 Group Si-OH Al-OH R-OH (libre) R-OH	Table 3. PeNa.	ercentage o	of intercalated	polymer in Bt-	BM	q _e , exp (mg/g)	k ₁ (min ⁻¹)	q _e ca (mg/	alc R (g)	$k_2 (min.s)$	g.mg ⁻¹) q _e (m	calc R ² g/g)	
		temper	ature range			49,98	0,09	12,7	74 0,9	98 0,0	4 9	,18 0,99	
Table 2: Main bands of PVP	materials	0 - 200 °C	200 - 700 °	C %	AB 29	49,51	0,22	78,4	1 0,9	94 0,0	4 9	,92 0,99	
$1/\lambda \text{ cm}^{-1}$ 358 6 - 38012855 - 292411801642GroupOH (H2O)C-HC-NC=O				Intercalation polymer	<u>3. E</u>	ffect of	<u>concen</u>	tratio	<u>n</u>				
	Bt-Na	17.2	2.7	/			120 -		—●— A —▲— M	B IB			
<u>2. XRD analysis</u>	PVP	15	85	/									
	PVP/Bt- Na	14	26.55	23.85		a (ma/a)							
6000 - 14.08 A° Bt-Na	4. Zet	<u>a potent</u>	ial analysi	S						20	30		
PVP	Table 4:alues of zeta potential			Figu	•e 5: Effe	ect of the in	nitial co	C _e (mg/L)	ion on the c	anacity of	adsorption	ì	
0			Bt-Na	PVP/Bt-Na	Tabl	e 6:Coeff	icients for	the adso	orption is	sotherm of d	yes on PVP	/Bt-Na	
0 2 4 6 8 10 12 14 16 18 20 2-Theta (°)	ζ (mV)	(a pH =	- 2,84	- 0,493		C	Coefficients	de Freu	indlich	Coefficie	nts de Langi	nuir	
Figure 2: Diffractogramme of the Bt-Na,	6,	15)	,	,			n	K _F	R ²	$q_m (mg.g^{-1})$	K _L (L.mg ⁻¹)	R ²	
PVP and PVP/Bt-Na	Reduction	n of the n	egative cha	arge of Bt-Na	B]	M	3,44 3	8,46	0,98	64,93	4,25	0,95	
Intercalation structure of DVD/Rt Na			• •		AB	29	4,34 24	4,53	0,99	47,93	0,04	0,93	
with $d_{001} - 22.04$ Å	PVI				<u>3. E</u>	ffect of	f temper	ature					
					Table	7:Therm	odynamic d	lata for	adsorptio	on of dyes on	to PVP/Bt-	Na	
	Bt-Na				(K	ΔH J/mol) (F	ΔS KJ/mol.K)	R ²	ΔG (kJ/n 296 K	nol) Δ (kJ/mo 308 K	ol) Δ(kJ/mo 318 K	ol) Δ(kJ/mol 328 K	l)
)	BM -	73,32	-0,186	0,99	-18,26	-16,032	2 -14,17	-12,31	
CONCLUSION					AB - 29	69,50	-0,195	0,99	-11,78	-10,98	-9,08	-7,18	
Composite based with PVP and sodic bentonite	was prepared	d as new a	adsorbent fo	r ionc dyes.			spontane	eous ai	nd endo	thermic pr	ocess		

		Pseud	o premier c	ordre	Pseudo de	uxième or	dre
BM	q _e , exp (mg/g)	k ₁ (min ⁻¹)	q _e calc (mg/g)	R ²	k_2 (min.g.mg ⁻¹)	q _e calc (mg/g)	R ²
	49,98	0,09	12,74	0,98	0,01	49,18	0,99
B 29	49,51	0,22	78,41	0,94	0,01	49,92	0,99
<u>3. Ef</u>	<u>fect of</u>	concent 120 -	<u>ration</u> _	AB MB			
<u>3. Ef</u>	fect of	120 - 80 - 40 -	ration_	AB MB			

✓ The intercalation of polymer in the bentonite was confirmed by DRX and TGA analysis.

Kinetic data of adsorption of dyes were well fitted by the pseudo-second-order kinetic model, while the isotherm data were well represented by the Freundlich model. \checkmark The adsorption of dyes was spantaneous ans endothermic nature.

The study of the adsorption of methylen blue and acid blue29 by the PVP/Bt-Na showed that the latter is a good candidate of adsorbing materials.