

¹ Laboratoire de Valorisation et Promotion des Ressources Sahariennes (VPRS), Université Kasdi Merbah Ouargla 30000, tatou.chimie@gmail.com² Affiliation de l'auteur ²Département de Chimie, Faculté des Mathématiques et des sciences de la matière / Université Kasdi Merbah Ouargla, Route Ghardaia, BP511.30000 Ouargla, zhorrahmani@gmail.com

Abstract

The term of medicinal plants includes the plants that activities possess therapeutic properties or exert beneficial pharmacological effect on the human or animal. Knowing Antioxidant activity of differe that the Sahara represents the three quarters of the tomentosa was determined by grounds of our country, and that it contains a vast [2]. The antioxidant capacity of practically unexplored flora. This fact tempted us to study was expressed as an IC_{50} . a plant which is in the Sahara pertaining to the family of Anti-diabetic activity of differ was determined using the inhibition Asclepiadacea. This study was aimed to assess in vitro antioxidant activity enzyme.

using DPPH test and anti-diabetic activity, and to isolate some bioactive compounds present in Pergularia tomentosa. As well as, extraction of total alkaloids from leaves of this plant.

The inhibition of DPPH[•] was expressed as an IC_{50} value which varied between 0.41 ± 0.02 and 0.8 ± 0.001 mg/ml for stems extracts. While, it varied between 0.10 ± 0.02 and 1.88 ± 0.32 mg/ml for leaves extracts. The highest percentage of inhibition of a-amylase was estimated at 36.44 in ethyl acetate stems extract. While, the less inhibition was estimated at 2.74% in gueues stems extract. The use of different chromatographic methods conduct us to isolate and to purify some bioactif compounds. Key-words: Pergularia tomentosa L., DPPH test , antidiabetic activity, alkaloids.

EXTRACTION AND ISOLATION OF BIOACTIVE COMPOUNDS, BIOLOGICAL ACTIVITIES AND EXTRACTION OF ALKALOIDS FROM PERGULARIA TOMENTOSA PLANT.

TOUAHRIA Tatou^{1*}, RAHMANI Zehour^{1, 2}, BELGUIDOUM Mahdi¹, RAHMANI Zineb¹, BELFAR Assia¹ and BENSACI Cheyma¹

tatou.chimie@

Determination of antioxidant

Figure 2: protocol of extraction of alkaloids [1].

Isolation and purification compounds

The copmounds isolated from P. Tomentosa were using different technique obtained by chromatographic such as silca gel column, C18 column, sephadex column and TLC plate.

gmail.com			
and anti-diabetic	Results		
	Table1: IC50 values of different extracts.		
ent extracts of P. using DPPH• test different extracts	IC50 (ma/ml)		
	Extract	Stems	Leaves
	crude	0.8 ± 0.001	0.375 ±0.01
rent stems extracts	Chloroform	0.53 ± 0.12	0.605± 0.03
bition of a-amylase	Ethyl acetate	0.41 ± 0.02	0.10 ± 0.02
Ikalaids	Butanol	0.79 ±0.22	0.27 ±0.01
	Aqueous	/	1.88 ± 0.32
NH4OH)			
	Table2: Percentage of inhibition of a- amylase.		
c extractive (alkaloids, pigments)	Stems extract		Percentage of inhibition (I%)
	Chloroform		22,03
Exhausted solvent (neutral organic phase)	Ethyl acetate Butanol		36.44
+ Liq-			19,22
H ₂ Cl ₂	Aqueous		2.74
			N N

This phytochimical study showed that this plant contain various secondary metabolites.

The present findings suggest that extracts obtained from Pergularia tomentosa L. possess antioxidant and anti-diabetic properties.

The use of different chromatographic methods conduct us to isolate and purify bioactif compounds, their chemical structure will be confirmed by using different spectroscopic methods such us: NMR (H, C, HMBC, HSQC, COSY), IR, MS.

[1] BRUNETON J; Pharmacognosie phytochimie plantes médicinales, 5^eédition, Lavoisier, p IV, Itali (2016) [2] MANSOURI A., EMBAREK G., KOKKALOU E. et KEFALAS P.; Food Chemistry, 89(3), pp 411-420 (2005).