

1st International Congress on Analytical Chemistry, Electrochemistry and Separation Techniques October 15th-16th, 2022

EXTRCTION , ANTIOXIDANT ACTIVITY OF PHENOLIC COMPOUNDS AND GC/MS ANALYSIS OF ESSENTIAL OIL , MINERALS ANALYSIS OF LAURUS NOBILIS

GUENANE Hadjira¹, MECHRAOUI Omar¹, TEGGAR Naoual¹, BAKCHICHE Boulanouar¹ ¹ Process Engineering Laboratory, Faculty of technologie, University of Amar Telidji-Laghouat B.P 37G, Laghouat 03000, Algeria.

01 Abstract

The aim of this work is the valorization of *Laurus* nobilis by chemical characterization, study of the antioxidant and the mineral analysis of the extracts and essential oils. The content of total phenols was determined using Folin-Ciocalteu reagent, whereas aluminum chloride colorimetric method was used for flavonoid determination. The total antioxidant capacity was estimated by the scavenging of free radicals DPPH• and ABTS•+ ,the phosphomolybdenum assay and by the FRAP (Ferric reducing /antioxidant power), expressed as IC50, TCEAC and VEAC. The essential oil composition of the leaf of Laurus nobilis was chromatography-Mass investigated by Gas spectrometry (GC-MS). Thirty four constituents were identified corresponding to 99.97 % of the total oil. The major components are 1,8-cineole (44.13 %), α-Terpinyl acetate (17.33 %) .Mineral and heavy metal concentration of Laurus nobilis were determined using Atomic Absorption Spectroscopy, A total of 7 elements Ca, K, Mg, Fe, Mn, Cu and Zn have been measured. Therefore, this plant is rich in some essential minerals, especially Ca, K, Fe and Mg.

02 MATÉRIELS ET MEHODES

Determination of total phenols and Flavonoids :Total phenolics were determined using Folin-Ciocalteu reagent as described by Slinkard and Singleton . (1977) and Flavonoids was identified as described by Ahn et al. (2007)

Antioxidant activity

•Phosphomolybdenum assay: The total antioxidant capacity of different fractions was evaluated by the method of Prieto, Pineda, and Aguilar. (1999)

•Ferric-reducing antioxidant power assay (FRAP) : the ferric reducing antioxidant power method of Oyaizu . (1986) was adopted to measure the reducing capacity.

•ABTS radical cation scavenging activity : The ABTS^{•+} method was based on the procedure described by Dorman and Hiltunen .(2004)

•DPPH radical-scavenging capacity : Free radical scavenging activity of different plant fractions against stable DPPH was determined spectrophotometrically by the slightly modified method of Brand Williams et al. (1995)

* Minerals analysis : Determination of Ca, Mg, K, Na, Cu, Fe, Mn and Zn in previously mineralized samples was performed using a Solaar 969 atomic absorption–emission spectrometer (Carbonell et al., 2002)

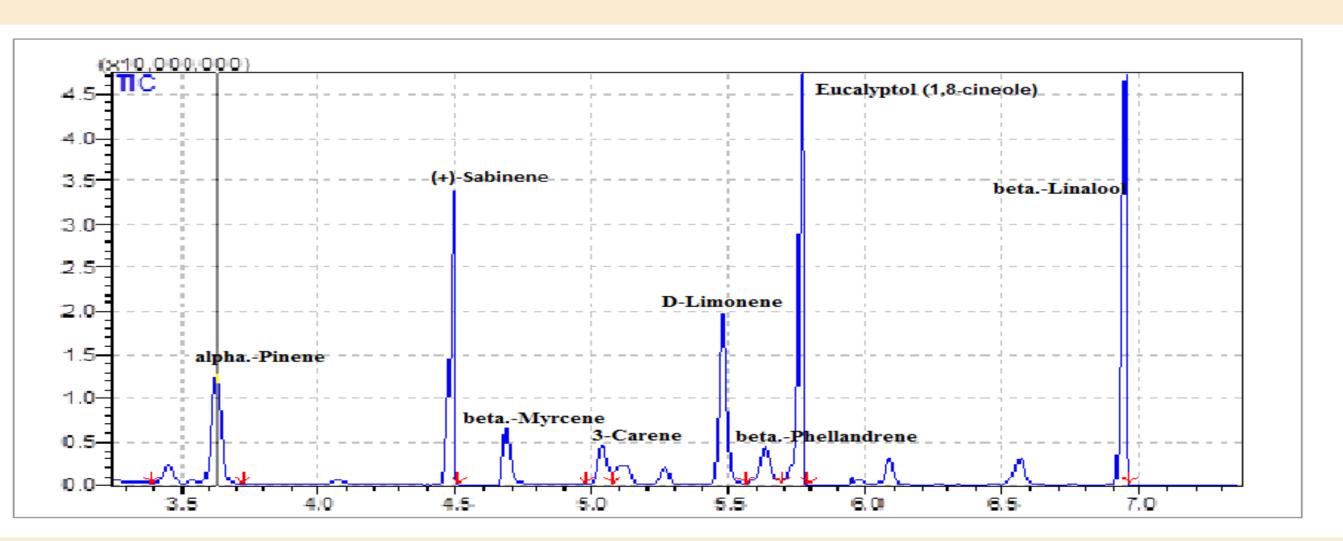
*Chromatographic analysis : The chromatographic analysis of the plant extracts (isolation and identification of the volatile compounds) were performed on a Shimadzu GC-17A gas chromatograph - mass spectrometer (GC–MS) coupled with a Shimadzu mass spectrometer detector QP-5050A

Keywords: GC-MS , FRAP, ABTS, DPPH, Phosphomolybdenum, minerals analysis

04 **DISCUSSION**

The total phenols, and flavonoids content was observed in extract from L.nobilis (25.70 ± 0.86 mg GAE g¹dw and 12.11 ±0.43 mg CE g⁻¹ dw respectively

Thirty four constituents were identified corresponding to 99.97 % of the total oil. The major components are 1,8-cineole (44.13 %), α -Terpinyl acetate (17.33 %), Methyl eugenol (6.53%) and Sabinene (5.25 %) Laurus nobilis extract and oil essantial showed interesting antioxidant activity with respect to the ABTS test (IC50 = 0.006 ± 0.001; 0.071± 0,0019 mg / ml) and phosphomolybdate (VCEAC = 0,211± 0.016; 0.099 ± 0.021 M), on the other hand the Laurus nobilis extract also showed a high activity with IC50 = 0.024 ± 0.003 : mg / ml) For the DPPH test and Reducing power (VCEAC = 0.157±0.007 ; 0.036 ± 0.0015 M).


Atomic absorption spectroscopy showed high levels of Ca, K, Mg and Fe, and trace amounts of Zn, Cu and Mn in *Laurus nobilis* extracts

RÉSULTATS

Table 1: les teneurs en polyphénols totauxet flavonoïdes dans les extraits de *L.nobilis*

Table 2 : Concentrations of mineral elements (mg kg⁻¹ dry weight, dw) in *L. nobilis* leaves.

	Total phenol	Flavonols and	Mineral	L. nobilis leaves	
plant	(Folin)	flavones	Macro-elements (mg kg ⁻¹ dw)		
	(mg GAE/g	(mg CE/g DW)	Calcium (Ca)	$7959\pm248^{\dagger}$	
	DW)		Magnesium (Mg)	1606 ± 34	
			Potassium (K)	6666 ± 495	
L. nobilis			Micro-elements (mg kg ⁻¹ dw)		
extracts	25.70 ± 0.861	12.11±0.430	Iron (Fe)	162 ± 17	
			Zinc (Zn)	32.9 ± 1.8	
			Copper (Cu)	20.4 ± 1.8	
			Manganese (Mn)	11.0 ± 0.3	

05 CONCLUSION

The results of this study indicated that *Laurus nobilis* has a high antioxidant activity determined by ABTS, DPPH and low antioxidant activity determined by FRAP, phosphomolybdenum . *L.nobilis* may be a good source of minerals (Ca , K, Fe, Mg, Mn , Zn, Cu) to treat number of diseases that are mainly caused due to the deficiency of those minerals Fig. 1. The chromatogram of the different compounds obtained from *L. nobilis*

Table 3 : Antioxidant activity of hydro-alcoholic extracts and essential oils of L. nobilis plants

Extract/ oil essantial	phosphomoly	Reducing power	ABTS	DPPH
	bdenum			
L. nobilis extracts	0,211±0.016	0.157±0.007	0.006 ± 0,018	0.024±0.003
L. nobilis oil	0.099 ± 0.021	0.036 ± 0.0015	$0.071 \pm 0,0019$	0.494±0.030
Ascorbic acid	1.00	1.00	ND	0.006±0.00003